It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Biological pacemakers consisting of pluripotent stem cell-derived cardiomyocytes are potentially useful for treating bradycardia. However, tachyarrhythmia caused by derived cardiomyocytes themselves is one of main barriers hampering their clinical translation. An in-depth understanding of the mechanisms underlying the spontaneous action potential (a.k.a. automaticity) might provide potential approaches to solve this problem. The aim of this project is to study the role of canonical transient receptor potential isoform 7 (TRPC7) channels in regulating the automaticity of embryonic stem cell-derived cardiomyocytes (ESC-CMs).
Methods and results
By Western blotting, the expression of TRPC7 was found to be increased during the differentiation of mouse ESC-CMs (mESC-CMs). Adenovirus-mediated TRPC7 knockdown decreased while overexpression increased the frequency of Ca2+ transients (CaTs), local Ca2+ releases (LCRs), and action potentials (APs) as detected by confocal microscopy and whole-cell patch-clamping. TRPC7 was found to be positively associated with the activity of ryanodine receptor 2 (RyR2), sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), and sodium-calcium exchanger (NCX) but not hyperpolarization-activated, cyclic nucleotide-gated channel (HCN), and inositol trisphosphate receptor (IP3R). Knockdown or overexpression of TRPC7 did not alter the expression of HCN4, Cav1.3, Cav3.1, Cav3.2, IP3R1, RyR2, and SERCA but positively regulated the phosphorylation of RyR2 at S2814 and phospholamban (PLN) at T17. Moreover, the positive regulation of APs by TRPC7 was Ca2+-dependent, as overexpression of N-terminus of TRPC7 (dominant negative of TRPC7) which diminished the Ca2+ permeability of TRPC7 decreased the AP frequency.
Conclusions
TRPC7 regulates the automaticity of mESC-CMs through two mechanisms. On the one hand, TRPC7 positively regulates the intracellular Ca2+ clock through the regulation of activities of both RyR2 and SERCA; on the other hand, TRPC7 also positively regulates the membrane clock via its influence on NCX activity. Altogether, our study reveals that TRPC7 is a potential drug target to manipulate the action potential firing rate of pluripotent stem cell-derived cardiomyocyte-based biological pacemakers to prevent tachyarrhythmia, a condition that might be encountered after transplantation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer