Abstract

Over- and under-sedation are common in the ICU, and contribute to poor ICU outcomes including delirium. Behavioral assessments, such as Richmond Agitation-Sedation Scale (RASS) for monitoring levels of sedation and Confusion Assessment Method for the ICU (CAM-ICU) for detecting signs of delirium, are often used. As an alternative, brain monitoring with electroencephalography (EEG) has been proposed in the operating room, but is challenging to implement in ICU due to the differences between critical illness and elective surgery, as well as the duration of sedation. Here we present a deep learning model based on a combination of convolutional and recurrent neural networks that automatically tracks both the level of consciousness and delirium using frontal EEG signals in the ICU. For level of consciousness, the system achieves a median accuracy of 70% when allowing prediction to be within one RASS level difference across all patients, which is comparable or higher than the median technician–nurse agreement at 59%. For delirium, the system achieves an AUC of 0.80 with 69% sensitivity and 83% specificity at the optimal operating point. The results show it is feasible to continuously track level of consciousness and delirium in the ICU.

Details

Title
Automated tracking of level of consciousness and delirium in critical illness using deep learning
Author
Sun Haoqi 1   VIAFID ORCID Logo  ; Kimchi Eyal 1 ; Akeju Oluwaseun 2   VIAFID ORCID Logo  ; Nagaraj, Sunil B 3 ; McClain, Lauren M 1 ; Zhou, David W 2 ; Boyle, Emily 1 ; Wei-Long, Zheng 1   VIAFID ORCID Logo  ; Ge Wendong 1 ; Brandon, Westover M 1   VIAFID ORCID Logo 

 Massachusetts General Hospital, Department of Neurology, Boston, USA (GRID:grid.32224.35) (ISNI:0000 0004 0386 9924) 
 Massachusetts General Hospital, Department of Anesthesia, Critical Care, and Pain Medicine, Boston, USA (GRID:grid.32224.35) (ISNI:0000 0004 0386 9924) 
 University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands (GRID:grid.4830.f) (ISNI:0000 0004 0407 1981) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
23986352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528861012
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.