Abstract

Familial hypercholesterolemia (FH) is an underdiagnosed dominant genetic condition affecting approximately 0.4% of the population and has up to a 20-fold increased risk of coronary artery disease if untreated. Simple screening strategies have false positive rates greater than 95%. As part of the FH Foundation′s FIND FH initiative, we developed a classifier to identify potential FH patients using electronic health record (EHR) data at Stanford Health Care. We trained a random forest classifier using data from known patients (n = 197) and matched non-cases (n = 6590). Our classifier obtained a positive predictive value (PPV) of 0.88 and sensitivity of 0.75 on a held-out test-set. We evaluated the accuracy of the classifier′s predictions by chart review of 100 patients at risk of FH not included in the original dataset. The classifier correctly flagged 84% of patients at the highest probability threshold, with decreasing performance as the threshold lowers. In external validation on 466 FH patients (236 with genetically proven FH) and 5000 matched non-cases from the Geisinger Healthcare System our FH classifier achieved a PPV of 0.85. Our EHR-derived FH classifier is effective in finding candidate patients for further FH screening. Such machine learning guided strategies can lead to effective identification of the highest risk patients for enhanced management strategies.

Details

Title
Finding missed cases of familial hypercholesterolemia in health systems using machine learning
Author
Banda, Juan M 1   VIAFID ORCID Logo  ; Sarraju Ashish 2 ; Abbasi Fahim 2 ; Parizo Justin 2 ; Pariani Mitchel 2 ; Ison, Hannah 2 ; Briskin Elinor 2 ; Wand, Hannah 2   VIAFID ORCID Logo  ; Dubois Sebastien 3 ; Jung, Kenneth 3 ; Myers, Seth A 4 ; Rader, Daniel J 5 ; Leader, Joseph B 6 ; Murray, Michael F 7 ; Myers, Kelly D 8 ; Wilemon Katherine 9 ; Shah, Nigam H 3 ; Knowles, Joshua W 10 

 Stanford University, Center for Biomedical Informatics Research, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956); Georgia State University, Department of Computer Science, Atlanta, USA (GRID:grid.256304.6) (ISNI:0000 0004 1936 7400) 
 Stanford University, Cardiovascular Medicine and Cardiovascular Institute, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 Stanford University, Center for Biomedical Informatics Research, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 Atomo, Inc, Austin, USA (GRID:grid.168010.e) 
 Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972); The FH Foundation, Pasadena, USA (GRID:grid.490743.d) 
 Genomic Medicine Institute, Geisinger Health System, Forty Fort, USA (GRID:grid.280776.c) (ISNI:0000 0004 0394 1447) 
 Yale University, Center for Genomic Health, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710) 
 Atomo, Inc, Austin, USA (GRID:grid.47100.32); The FH Foundation, Pasadena, USA (GRID:grid.490743.d) 
 The FH Foundation, Pasadena, USA (GRID:grid.490743.d) 
10  Stanford University, Cardiovascular Medicine and Cardiovascular Institute, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956); The FH Foundation, Pasadena, USA (GRID:grid.490743.d); Stanford Diabetes Research Center, Stanford, USA (GRID:grid.490743.d) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
23986352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528862592
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.