It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Automated chemical synthesis of oligonucleotides is of fundamental importance for the production of primers for the polymerase chain reaction (PCR), for oligonucleotide-based drugs, and for numerous other medical and biotechnological applications. The highly optimised automised chemical oligonucleotide synthesis relies upon phosphoramidites as the phosphate precursors and one of the drawbacks of this technology is the poor bench stability of phosphoramidites. Here, we report on the development of an on-demand flow synthesis of phosphoramidites from their corresponding alcohols, which is accomplished with short reaction times, near-quantitative yields and without the need of purification before being submitted directly to automated oligonucleotide synthesis. Sterically hindered as well as redox unstable phosphoramidites are synthesised using this methodology and the subsequent couplings are near-quantitative for all substrates. The vision for this technology is direct integration into DNA synthesisers thereby omitting manual synthesis and storage of phosphoramidites.
The poor bench stability of phosphoramidites is a drawback for fast automised chemical oligonucleotide synthesis. Here, the authors report a method for on-demand flow synthesis of phosphoramidites within short reaction times, in near-quantitative yields and sufficient purity for integration with DNA synthesizers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Aarhus University, Interdisciplinary Nanoscience Center, iNANO, Aarhus C, Denmark (GRID:grid.7048.b) (ISNI:0000 0001 1956 2722)
2 Aarhus University, Interdisciplinary Nanoscience Center, iNANO, Aarhus C, Denmark (GRID:grid.7048.b) (ISNI:0000 0001 1956 2722); Aarhus University, Department of Chemistry, Aarhus C, Denmark (GRID:grid.7048.b) (ISNI:0000 0001 1956 2722)