Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The search for sustainability has led to the utilization of more ecological materials with at least, a similar structural performance to those used at present. In this regard, reed fits the environmental and structural requirements as it is a sustainable and biodegradable lignin-cellulose material with remarkable mechanical properties. This research confirms the reed’s structural efficiency as it demonstrates that it has excellent strength and stiffness in relation to its density. The reed anisotropy has a large impact on its properties. Indeed, the strength and stiffness parallel to the fibers are clearly higher than in the perpendicular direction. The results confirm that strength and stiffness decrease with the moisture content and nodes act as reinforcement in compression and bending. If compared with steel, timber and concrete, the reed possesses the highest value for strength. Hence, reed constitutes a strong candidate for environmentally friendly engineering.

Details

Title
Characterization of Mechanical and Hygroscopic Properties of Individual Canes of Reed
Author
Jiménez-Espada, Montaña 1   VIAFID ORCID Logo  ; Herrero-Adán, Daniel 2 ; González-Escobar, Rafael 1 

 Department of Construction, School of Technology, University of Extremadura, Avda de la Universidad s/n, CP-10003 Cáceres, Spain; [email protected] 
 Department of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, UK; [email protected] 
First page
2193
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530158921
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.