Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The application of recycled coarse aggregate (RCA) made from waste concrete to replace natural coarse aggregate (NCA) in concrete structures can essentially reduce the excessive consumption of natural resources and environmental pollution. Similar to normal concrete structures, recycled concrete structures would also suffer from the damage of carbonation, which leads to the deterioration of durability and the reduction of service life. This paper presents the experimental results of the cubic compressive strength, the static elastic modulus and the stress–strain relation of recycled coarse aggregate concrete (RAC) after carbonation. The results show that the cubic compressive strength and the static elastic modulus of carbonated RAC gradually increased with the carbonation depth. The uncarbonated and fully carbonated RAC show smaller static elastic modulus than natural aggregate concrete (NAC). As the carbonation depth increased, the peak stress increased, while the peak strain decreased and the descending part of the curves gradually became steeper. As the content of RCA became larger, the peak stress decreased, while the peak strain increased and the descending part of the curves gradually became steeper. An equation for stress–strain curves of RAC after carbonation was proposed, and it was in good agreement with the test results.

Details

Title
Mechanical Properties and Uniaxial Compression Stress—Strain Relation of Recycled Coarse Aggregate Concrete after Carbonation
Author
Tian-Wen, Chen; Guo-Qing, Dong
First page
2215
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530161254
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.