Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

5G and Beyond 5G mobile networks use several high-frequency spectrum bands such as the millimeter-wave (mmWave) bands to alleviate the problem of bandwidth scarcity. However high-frequency bands do not cover larger distances. The coverage problem is addressed by using a heterogeneous network which comprises numerous small and macrocells, defined by transmission and reception points (TRxPs). For such a network, random access is considered a challenging function in which users attempt to select an efficient TRxP by random access within a given time. Ideally, an efficient TRxP is less congested, minimizing delays in users’ random access. However, owing to the nature of random access, it is not feasible to deploy a centralized controller estimating the congestion level of each cell and deliver this information back to users during random access. To solve this problem, we establish an optimization problem and employ a reinforcement-learning-based scheme. The proposed scheme estimates congestion of TRxPs in service and selects the optimal access point. Mathematically, this approach is beneficial in approximating and minimizing a random access delay function. Through simulation, we demonstrate that our proposed deep learning-based algorithm improves performance on random access. Notably, the average access delay is improved by 58.89% from the original 3GPP algorithm, and the probability of successful access also improved.

Details

Title
Random Access Using Deep Reinforcement Learning in Dense Mobile Networks
Author
Yared Zerihun Bekele 1 ; Young-June, Choi 2 

 Department of Artificial Intelligence, Ajou University, Suwon 16499, Korea; [email protected] 
 Department of Software and Computer Engineering, Ajou University, Suwon 16499, Korea 
First page
3210
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530179039
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.