Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Appropriate use of helmets as industrial personal protective gear is a long-standing challenge. The dilemma for any user wearing a helmet is thermal discomfort versus the chances of head injuries while not wearing it. Applying helmet microclimate psychrometry, we propose a logistic regression- (LR) based machine learning (ML) algorithm coupled with low-cost and readily available MEMS sensors to determine if a helmet was worn (W) or not worn (NW) by a human user. Experiment runs involving human subject (S) and mannequin experiment control (C) groups were conducted across no mask (NM) and mask (M) conditions. Only ambient-microclimate humidity difference (AMHD) was a feasible parameter for helmet wearing determination with 71 to 85% goodness of fit, 72 to 76% efficacy, and distinction from control group. Ambient-microclimate humidity difference’s rate of change (AMHDROC) had high correlation to helmet wearing and removal initiations and was quantitatively better in all measures. However, its feasibility was doubtful for continuous use beyond 1 min due to plateauing AMHD response. Experiments with control groups and temperature measurement showed invariant response to helmet worn or not worn with goodness of fit and efficacy consolidation to 50%. Results showed the algorithm can make helmet-wearing determinations with combination of analysis and use of data that was individually authentic and non-identifiable. This is an improvement as compared to state of the art skin-contact mechanisms and image analytics methods in enabling safety enhancements through data-driven worker safety ownership.

Details

Title
Application of Machine Learning Algorithm on MEMS-Based Sensors for Determination of Helmet Wearing for Workplace Safety
Author
Yan Hao Tan 1   VIAFID ORCID Logo  ; Agarwal Hitesh 2 ; King Ho Holden Li 1   VIAFID ORCID Logo 

 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; [email protected] 
 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; [email protected] 
First page
449
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530228834
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.