It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Multi-functional photo-imaging garners attention towards the development of universal safety-net sensor networks. Although there are urgent needs to comprehensively address the optical information from arbitrarily structured and located targets, investigations on multi-view sensitive broadband monitoring, being independent of the operating environment, are yet to be completed. This study presents a robot-assisted, photo-source and imager implanted, multi-view stereoscopic sensitive broadband photo-monitoring platform with reflective and transmissive switchable modes. A multifaceted photo-thermoelectric device design based on flexible carbon nanotube films facilitates the prototype demonstrations of non-destructive, target-structure-independent, free-form multi-view examinations on actual three-dimensional industrial components. Further functionalisation, namely, a portable system utilising three-dimensional printing and ultraviolet processing, achieves the unification of freely attachable photo-imagers and miniature photo-sources, enabling location-independent operation. Consequently, the non-destructive unmanned, remote, high-speed, omni-directional testing of a defective aerial miniature model winding road-bridge with a robot-assisted photo-source imager built into a multi-axis movable photo-thermoelectric monitor arm is demonstrated.
The use of imager devices to supplement broadband photo-monitoring technology has enabled multi-functional sensing capability relevant to internet of things-related applications. Here, the authors report a robotassisted imager-implanted broadband photo-monitoring sensing platform.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Tokyo, Japan (GRID:grid.32197.3e) (ISNI:0000 0001 2179 2105)
2 Center for Emergent Matter Science, RIKEN, Saitama, Japan (GRID:grid.7597.c) (ISNI:0000000094465255)