It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Environment-friendly flexible Cu2ZnSn(S,Se)4 (CZTSSe) solar cells show great potentials for indoor photovoltaic market. Indoor lighting is weak and multi-directional, thus the researches of photovoltaic device structures, techniques and performances face new challenges. Here, we design symmetrical bifacial CZTSSe solar cells on flexible Mo-foil substrate to efficiently harvest the indoor energy. Such devices are fabricated by double-sided deposition techniques to ensure bifacial consistency and save cost. We report 9.3% and 9% efficiencies for the front and back sides of the flexible CZTSSe solar cell under the standard sun light. Considering the indoor environment, we verify weak-light response performance of the devices under LED illumination and flexibility properties after thousands of bending. Bifacial CZTSSe solar cells in parallel achieve the superposition of double-sided output current from multi-directional light, significantly enhancing the area utilization rate. The present results and methods are expected to expand indoor photovoltaic applications.
Indoor lighting is weak and multi-directional, thus the requirement for photovoltaic differs from that designed for outdoor. To efficiently harvest the indoor energy, the authors designed CZTSSe bifacial solar cells on flexible Mo substrate using double-sided deposition to ensure consistency and to save cost.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Fuzhou University, College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou, China (GRID:grid.411604.6) (ISNI:0000 0001 0130 6528)
2 Fuzhou University, College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou, China (GRID:grid.411604.6) (ISNI:0000 0001 0130 6528); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, China (GRID:grid.411604.6)