Abstract

A remarkable feature of chaos in many-body quantum systems is the existence of a bound on the quantum Lyapunov exponent. An important question is to understand what is special about maximally chaotic systems which saturate this bound. Here we provide further evidence for the ‘hydrodynamic’ origin of chaos in such systems, and discuss hallmarks of maximally chaotic systems. We first provide evidence that a hydrodynamic effective field theory of chaos we previously proposed should be understood as a theory of maximally chaotic systems. We then emphasize and make explicit a signature of maximal chaos which was only implicit in prior literature, namely the suppression of exponential growth in commutator squares of generic few-body operators. We provide a general argument for this suppression within our chaos effective field theory, and illustrate it using SYK models and holographic systems. We speculate that this suppression indicates that the nature of operator scrambling in maximally chaotic systems is fundamentally different to scrambling in non-maximally chaotic systems. We also discuss a simplest scenario for the existence of a maximally chaotic regime at sufficiently large distances even for non-maximally chaotic systems.

Details

Title
On systems of maximal quantum chaos
Author
Blake, Mike 1 ; Liu, Hong 2 

 University of Bristol, School of Mathematics, Fry Building, Bristol, U.K. (GRID:grid.5337.2) (ISNI:0000 0004 1936 7603) 
 Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, U.S.A. (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
Publication year
2021
Publication date
May 2021
Publisher
Springer Nature B.V.
e-ISSN
10298479
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2531849524
Copyright
© The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.