Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intestinal commensal bacteria are considered good indicators for monitoring antimicrobial resistance. We investigated the antimicrobial resistance profiles and resistance trends of Enterococcus faecium and Enterococcus faecalis isolated from food animals in Korea between 2010 and 2019. E. faecium and E. faecalis, isolated from chickens and pigs, respectively, presented a relatively high resistance rate to most of the tested antimicrobials. We observed high ciprofloxacin (67.9%), tetracycline (61.7%), erythromycin (59.5%), and tylosin (53.0%) resistance in E. faecium isolated from chickens. Similarly, more than half of the E. faecalis isolates from pigs and chickens were resistant to erythromycin, tetracycline and tylosin. Notably, we observed ampicillin, daptomycin, tigecycline and linezolid resistance in a relatively small proportion of enterococcal isolates. Additionally, the enterococcal strains exhibited an increasing but fluctuating resistance trend (p < 0.05) to some of the tested antimicrobials including daptomycin and/or linezolid. E. faecalis showed higher Multidrug resistance (MDR) rates than E. faecium in cattle (19.7% vs. 8.6%, respectively) and pigs (63.6% vs. 15.6%, respectively), whereas a comparable MDR rate (≈60.0%) was noted in E. faecium and E. faecalis isolated from chickens. Collectively, the presence of antimicrobial-resistant Enterococcus in food animals poses a potential risk to public health.

Details

Title
Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019
Author
Kim, Mi Hyun; Dong Chan Moon  VIAFID ORCID Logo  ; Su-Jeong, Kim; Abraham, Fikru Mechesso; Hyun-Ju, Song; Hee Young Kang; Ji-Hyun, Choi; Yoon, Soon-Seek  VIAFID ORCID Logo 
First page
925
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532172507
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.