Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Characterized by a large surface area to volume ratio, nanostructured metal oxides possess unique chemical and physical properties with applications in electronics, catalysis, sensors, etc. In this study, Mo3Al8, an intermetallic compound, has been used as a precursor to obtain nanostructured molybdenum oxides. It was prepared into ribbons by arc-melting and melt-spinning techniques. Single and double-step free corrosion of the as-quenched material have been studied in 1 M KOH, 1 M HF and 1.25 M FeCl3 at room temperature. In both cases, nanostructured molybdenum oxides were obtained on a surface layer a few microns thick. Two of the as-prepared samples were tested for their electrocatalytic capability for hydrogen evolution reaction (HER) in 0.5 M H2SO4 giving low onset potential (−50 mV, −45 mV), small Tafel slopes (92 mV dec−1, 9 mV dec−1) and high exchange current densities (0.08 mA cm−2, 0.35 mA cm−2 respectively). The proposed nanostructured molybdenum oxides are cost-effective and sustainable due to the cheap and abundant starting material used and the simple synthetic route, paving the way for their possible application as HER electrocatalysts.

Details

Title
Nanostructured Molybdenum Oxides from Aluminium-Based Intermetallic Compound: Synthesis and Application in Hydrogen Evolution Reaction
Author
Raj, Deepti 1   VIAFID ORCID Logo  ; Scaglione, Federico 1   VIAFID ORCID Logo  ; Fiore, Gianluca 1 ; Celegato, Federica 2 ; Rizzi, Paola 1   VIAFID ORCID Logo 

 Dipartimento di Chimica and Centro Interdipartimentale NIS (Nanostructured Interfaces and Surfaces), Università di Torino, V. Giuria 7, 10125 Turin, Italy; [email protected] (D.R.); [email protected] (G.F.); [email protected] (P.R.) 
 Istituto Nazionale di Ricerca Metrologica (INRIM), Str. Delle Cacce 91, 10135 Turin, Italy; [email protected] 
First page
1313
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532191464
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.