Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To improve the AlCoCrFeNi high entropy alloys’ (HEAs’) toughness, it was coated with different amounts of Cu then fabricated by the powder metallurgy technique. Mechanical alloying of equiatomic AlCoCrFeNi HEAs for 25 h preceded the coating process. The established powder samples were sintered at different temperatures in a vacuum furnace. The HEAs samples sintered at 950 °C exhibit the highest relative density. The AlCoCrFeNi HEAs model sample was not successfully produced by the applied method due to the low melting point of aluminum. The Al element’s problem disappeared due to encapsulating it with a copper layer during the coating process. Because the atomic radius of the copper metal (0.1278 nm) is less than the atomic radius of the aluminum metal (0.1431 nm) and nearly equal to the rest of the other elements (Co, Cr, Fe, and Ni), the crystal size powder and fabricated samples decreased by increasing the content of the Cu wt%. On the other hand, the lattice strain increased. The microstructure revealed that the complete diffusion between the different elements to form high entropy alloy material was not achieved. A dramatic decrease in the produced samples’ hardness was observed where it decreased from 403 HV at 5 wt% Cu to 191 HV at 20 wt% Cu. On the contrary, the compressive strength increased from 400.034 MPa at 5 wt% Cu to 599.527 MPa at 15 wt% Cu with a 49.86% increment. This increment in the compressive strength may be due to precipitating the copper metal on the particles’ surface in the nano-size, reducing the dislocations’ motion, increasing the stiffness of produced materials. The formability and toughness of the fabricated materials improved by increasing the copper’s content. The thermal expansion has increased gradually by increasing the Cu wt%.

Details

Title
Effect of Copper Addition on the AlCoCrFeNi High Entropy Alloys Properties via the Electroless Plating and Powder Metallurgy Technique
Author
Mohamed Ali Hassan 1 ; Yehia, Hossam M 2 ; Mohamed, Ahmed S A 3   VIAFID ORCID Logo  ; Ahmed Essa El-Nikhaily 4 ; Elkady, Omayma A 5 

 Mechanical Department, Faculty of Technology and Education, Sohag University, Sohag 82524, Egypt; [email protected] (M.A.H.); [email protected] (A.S.A.M.) 
 Mechanical Department, Faculty of Technology and Education, Helwan University, Cairo 11795, Egypt; [email protected] 
 Mechanical Department, Faculty of Technology and Education, Sohag University, Sohag 82524, Egypt; [email protected] (M.A.H.); [email protected] (A.S.A.M.); High Institute for Engineering and Technology, Sohag 82524, Egypt 
 Mechanical Department, Faculty of Technology and Education, Suez University, Suez 41522, Egypt; [email protected] 
 Powder Technology Department, Central Metallurgical R & D Institute, P.O. Box 87 Helwan, Cairo 11421, Egypt 
First page
540
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532312774
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.