Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This article is aimed to study the effect of laser treatment of AISI 304 stainless steel on the corrosion resistance and chemical composition of the surface layer. The samples were irradiated using two quite different laser sources: IPG Yb:glass fibre laser (τ = 230 ns, λ = 1062 nm) and Trumpf TruMicro Series 2020 fiber laser (τ = 260 fs–20 ps, λ = 1030 nm) that is, in both the long and ultra-short pulse duration regime. It allowed the observation of completely different microstructures and chemical composition of the surface layer. In this study, the morphology of the samples was accessed using both Keyence digital microscope and Olympus Lext 5000 profilometer. The corrosion resistance was examined in 3% NaCl solution using both potentiodynamic measurement and Electrochemical Impedance Spectroscopy. In order to examine the change in chemical composition of the surface layer, the X-ray photoelectron spectroscopy study was performed. Results show that the use of a long laser pulse contributes to the formation of a thin, tight, rich in chromium passive layer, which significantly improves corrosion resistance in comparison to the reference sample. Different behaviour is observed after irradiation with an ultra-short pulse duration laser.

Details

Title
Corrosion Resistance of AISI 304 Stainless Steel Modified Both Femto- and Nanosecond Lasers
Author
Mroczkowska, Katarzyna M 1 ; Dzienny, Paulina 1   VIAFID ORCID Logo  ; Budnicki, Aleksander 2 ; Antończak, Arkadiusz J 1   VIAFID ORCID Logo 

 Faculty of Electronics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; [email protected] (K.M.M.); [email protected] (P.D.) 
 TRUMPF Laser GmbH + Co. KG, Aichhalder Straße 39, D-78713 Schramberg, Germany; [email protected] 
First page
592
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532316383
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.