Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Isopeptidase activity of proteases plays critical roles in physiological and pathological processes in living organisms, such as protein stability in cancers and protein activity in infectious diseases. However, the kinetics of protease isopeptidase activity has not been explored before due to a lack of methodology. Here, we report the development of novel qFRET-based protease assay for characterizing the isopeptidase kinetics of SENP1. The reversible process of SUMOylation in vivo requires an enzymatic cascade that includes E1, E2, and E3 enzymes and Sentrin/SUMO-specific proteases (SENPs), which can act either as endopeptidases that process the pre-SUMO before its conjugation, or as isopeptidases to deconjugate SUMO from its target substrate. We first produced the isopeptidase substrate of CyPet-SUMO1/YPet-RanGAP1c by SUMOylation reaction in the presence of SUMO E1 and E2 enzymes. Then a qFRET analyses of real-time FRET signal reduction of the conjugated substrate of CyPet-SUMO1/YPet-RanGAP1c to free CyPet-SUMO1 and YPet-RanGAP1c by the SENP1 were able to obtain the kinetic parameters, Kcat, KM, and catalytic efficiency (Kcat/KM) of SENP1. This represents a pioneer effort in isopeptidase kinetics determination. Importantly, the general methodology of qFRET-based protease isopeptidase kinetic determination can also be applied to other proteases.

Details

Title
Isopeptidase Kinetics Determination by a Real Time and Sensitive qFRET Approach
Author
Liu, Yan 1 ; Shen, Yali 2 ; Yang, Song 1 ; Xu, Lei 3   VIAFID ORCID Logo  ; Perry, J Jefferson P 4 ; Liao, Jiayu 5   VIAFID ORCID Logo 

 Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA; [email protected] (Y.L.); [email protected] (Y.S.) 
 Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; [email protected] 
 Department of Geography & the Environment, California State University, Fullerton, 800 N State College Blvd, Fullerton, CA 92831, USA; [email protected] 
 Department of Biochemistry, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA 
 Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA; [email protected] (Y.L.); [email protected] (Y.S.); Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; [email protected]; Department of Biochemistry, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA 
First page
673
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532318184
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.