It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing topological quantum computation. Recently, the study of topological phases has been extended to 3D and it has been proposed that loop-like extensive objects can also carry fractional statistics. In this work, we systematically study the so-called three-loop braiding statistics for 3D interacting fermion systems. Most surprisingly, we discover new types of non-Abelian three-loop braiding statistics that can only be realized in fermionic systems (or equivalently bosonic systems with emergent fermionic particles). On the other hand, due to the correspondence between gauge theories with fermionic particles and classifying fermionic symmetry-protected topological (FSPT) phases with unitary symmetries, our study also gives rise to an alternative way to classify FSPT phases. We further compare the classification results for FSPT phases with arbitrary Abelian unitary total symmetry Gf and find systematical agreement with previous studies.
Non-Abelian statistics plays a crucial role towards realizing topological quantum computation. Here, the authors discover new types of non-Abelian three-loop braiding statistics that can only be realized in 3D interacting fermionic systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 The Chinese University of Hong Kong, Department of Physics, Shatin, Hong Kong (GRID:grid.10784.3a) (ISNI:0000 0004 1937 0482)
2 The University of Hong Kong, Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics, Hong Kong, China (GRID:grid.194645.b) (ISNI:0000000121742757)