Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Shihmen Reservoir watershed is vital to the water supply in Northern Taiwan but the reservoir has been heavily impacted by sedimentation and soil erosion since 1964. The purpose of this study was to explore the capability of machine learning algorithms, such as decision tree and random forest, to predict soil erosion (sheet and rill erosion) depths in the Shihmen reservoir watershed. The accuracy of the models was evaluated using the RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), and R2. Moreover, the models were verified against the multiple regression analysis, which is commonly used in statistical analysis. The predictors of these models were 14 environmental factors which influence soil erosion, whereas the target was 550 erosion pins installed at 55 locations (on 55 slopes) and monitored over a period of approximately three years. The data sets for the models were separated into 70% for the training data and 30% for the testing data, using the simple random sampling and stratified random sampling methods. The results show that the random forest algorithm performed the best of the three methods. Moreover, the stratified random sampling method had better results among the two sampling methods, as anticipated. The average error (RMSE relative to 1:1 line) of the stratified random sampling method of the random forest algorithm is 0.93 mm/yr in the training data and 1.75 mm/yr in the testing data, respectively. Finally, the random forest algorithm predicted that type of slope, slope direction, and sub-watershed are the three most important factors of the 14 environmental factors collected and used in this study for splits in the trees and thus they are the three most important factors affecting the depth of sheet and rill erosion in the Shihmen Reservoir watershed. The results of this study can be employed by decision-makers to improve soil conservation planning and watershed remediation.

Details

Title
Predicting Sheet and Rill Erosion of Shihmen Reservoir Watershed in Taiwan Using Machine Learning
Author
Nguyen, Kieu Anh 1   VIAFID ORCID Logo  ; Chen, Walter 1   VIAFID ORCID Logo  ; Lin, Bor-Shiun 2   VIAFID ORCID Logo  ; Seeboonruang, Uma 3 ; Kent, Thomas 1   VIAFID ORCID Logo 

 Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan 
 Disaster Prevention Technology Research Center, Sinotech Engineering Consultants, Taipei 11494, Taiwan 
 Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand 
First page
3615
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533210300
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.