Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The emergence extension system (a mechanical system) of nose landing gear (NLG) seriously influences the reliability, safety and airworthiness of civil aircrafts. To efficiently realize the NLG emergence extension, a promising driving plan of emergence extension is proposed in respect of the reliability sensitivity analyses with a mixture of models. The working principle, fault tree analysis and four reliability models are firstly discussed for NLG emergence extension. In respect of the mixture of models, the reliability sensitivity analyses of emergence extension are then performed under different flight speeds (270 Kts, 250 Kts, 220 Kts, and 180 Kts). We find dimpling torque and aerodynamic torques of forward and after doors are the top three failure factors and the start reliability is the most in emergence extension failures. Regarding the results, feasible driving plans of NLG emergence extension are developed by adjusting the aerodynamic torque of NLG forward door, and are validated by the aerodynamic torque experiment of forward door with regard to strut rotational angle under the flight speed 270 Kts. It is indicated that (1) the adverse torque generated by the new driving mechanism obviously reduces by about 24.8% from 1462.8 N·m to 1099.6 N·m, and the transmission ratio of aerodynamic torque (force) is greatly improved when the NLG strut is lowered near to 100°; (2) under different flight speeds (180 Kts, 220 Kts, 250 Kts, and 270 Kts), the new driving mechanism realizes the lower tasks of emergence extension which cannot be completed by the initial driving mechanism; and (3) the lowering time of the new driving mechanism shortens with the increasing flight speed. The proposed new driving mechanism is verified to be reliable for emergence extension of aircraft NLG besides normal extension and to be a promising feasible driving plan with high lowering reliability. The efforts of the paper provide an efficient driving mechanism for the design of NLG in civil and military aircrafts.

Details

Title
Efficient Driving Plan and Validation of Aircraft NLG Emergency Extension System via Mixture of Reliability Models and Test Bench
Author
Zhu, Zhengzheng 1   VIAFID ORCID Logo  ; Feng, Yunwen 1 ; Cheng, Lu 1   VIAFID ORCID Logo  ; Chengwei Fei 2   VIAFID ORCID Logo 

 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China 
 Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China 
First page
3578
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533593154
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.