Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This work introduces a new approach for automatic identification of crickets, katydids and cicadas analyzing their acoustic signals. We propose the building of a tool to identify this biodiversity. The study proposes a sound parameterization technique designed specifically for identification and classification of acoustic signals of insects using Mel Frequency Cepstral Coefficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC). These two sets of coefficients are evaluated individually as has been done in previous studies and have been compared with the fusion proposed in this work, showing an outstanding increase in identification and classification at species level reaching a success rate of 98.07% on 343 insect species.

Details

Title
Acoustic Classification of Singing Insects Based on MFCC/LFCC Fusion
Author
Noda, Juan J 1 ; Travieso-González, Carlos M 2   VIAFID ORCID Logo  ; Sánchez-Rodríguez, David 3   VIAFID ORCID Logo  ; Alonso-Hernández, Jesús B 2   VIAFID ORCID Logo 

 Institute for Technological Development and Innovation in Communications, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain; [email protected] (J.J.N.); [email protected] (C.M.T.-G.); [email protected] (J.B.A.-H.) 
 Institute for Technological Development and Innovation in Communications, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain; [email protected] (J.J.N.); [email protected] (C.M.T.-G.); [email protected] (J.B.A.-H.); Signal and Communications Department, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain 
 Institute for Technological Development and Innovation in Communications, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain; [email protected] (J.J.N.); [email protected] (C.M.T.-G.); [email protected] (J.B.A.-H.); Telematic Engineering Department, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain 
First page
4097
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533661384
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.