Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although various algorithms have widely been studied for bankruptcy and credit risk prediction, conclusions regarding the best performing method are divergent when using different performance assessment metrics. As a solution to this problem, the present paper suggests the employment of two well-known multiple-criteria decision-making (MCDM) techniques by integrating their preference scores, which can constitute a valuable tool for decision-makers and analysts to choose the prediction model(s) more properly. Thus, selection of the most suitable algorithm will be designed as an MCDM problem that consists of a finite number of performance metrics (criteria) and a finite number of classifiers (alternatives). An experimental study will be performed to provide a more comprehensive assessment regarding the behavior of ten classifiers over credit data evaluated with seven different measures, whereas the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE) techniques will be applied to rank the classifiers. The results demonstrate that evaluating the performance with a unique measure may lead to wrong conclusions, while the MCDM methods may give rise to a more consistent analysis. Furthermore, the use of MCDM methods allows the analysts to weight the significance of each performance metric based on the intrinsic characteristics of a given credit granting decision problem.

Details

Title
Synergetic Application of Multi-Criteria Decision-Making Models to Credit Granting Decision Problems
Author
García, Vicente 1   VIAFID ORCID Logo  ; J Salvador Sánchez 2   VIAFID ORCID Logo  ; Marqués, Ana I 3 

 Department of Electrical and Computer Engineering, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; [email protected] 
 Institute of New Imaging Technologies, Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castelló de la Plana, Spain 
 Department of Business Administration and Marketing, Universitat Jaume I, 12071 Castelló de la Plana, Spain; [email protected] 
First page
5052
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533723427
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.