Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the usage growth rate of Internet of Things (IoT) devices is increasing, various issues related to these devices need attention. One of them is the distribution of the IoT firmware update. The IoT devices’ software development does not end when the manufacturer sells the devices to the market. It still needs to be kept updated to prevent cyber-attacks. The commonly used firmware update process, over-the-air (OTA), mostly happens in a centralized way, in which the IoT devices directly download the firmware update from the manufacturer’s server. This central architecture makes the manufacturer’s server vulnerable to single-point-of-failure and latency issues that can delay critical patches from being applied to vulnerable devices. The Open Connectivity Foundation (OCF) is one organization contributing to providing interoperability services for IoT devices. In one of their subject areas, they provide a firmware update protocol for IoT devices. However, their firmware update process does not ensure the integrity and security of the patches. In this paper, we propose a blockchain-based OCF firmware update for IoT devices. Specifically, we introduce two types of firmware update protocol, direct and peer-to-peer updates, integrated into OCF firmware update specifications. In the direct scenario, the device, through the IoT gateway, can download the new firmware update from the manufacturer’s server. Meanwhile, in the peer-to-peer scheme, the device can query the update from the nearby gateways. We implemented our protocol using Raspberry Pi hardware and Ethereum-based blockchain with the smart contracts to record metadata of the manufacturer’s firmware updates. We evaluated the proposed system’s performance by measuring the average throughput, the latency, and the firmware update distribution’s duration. The analysis results indicate that our proposal can deliver firmware updates in a reasonable duration, with the peer-to-peer version having a faster completion time than the direct one.

Details

Title
A Blockchain-Based OCF Firmware Update for IoT Devices
Author
Witanto, Elizabeth Nathania 1   VIAFID ORCID Logo  ; Oktian, Yustus Eko 1   VIAFID ORCID Logo  ; Sang-Gon, Lee 1   VIAFID ORCID Logo  ; Jin-Heung, Lee 2 

 College of Software Convergence, Dongseo University, Busan 47011, Korea; [email protected] (E.N.W.); [email protected] (Y.E.O.) 
 Daun Information and Communication, Busan 48058, Korea; [email protected] 
First page
6744
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533959307
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.