Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plant DNA viruses of the genus Begomovirus have been documented as the most genetically diverse in the family Geminiviridae and present a serious threat for global horticultural production, especially considering climate change. It is important to characterize naturally existing begomoviruses, since viral genetic diversity in non-cultivated plants could lead to future disease epidemics in crops. In this study, high-throughput sequencing (HTS) was employed to determine viral diversity of samples collected in a survey performed during 2012–2016 in seven states of Northern-Pacific Mexico, areas of diverse climatic conditions where different vegetable crops are subject to intensive farming. In total, 132 plant species, belonging to 34 families, were identified and sampled in the natural ecosystems surrounding cultivated areas (agro-ecological interface). HTS analysis and subsequent de novo assembly revealed a number of geminivirus-related DNA signatures with 80 to 100% DNA similarity with begomoviral sequences present in the genome databank. The analysis revealed DNA signatures corresponding to 52 crop-infecting and 35 non-cultivated-infecting geminiviruses that, interestingly, were present in different plant species. Such an analysis deepens our knowledge of geminiviral diversity and could help detecting emerging viruses affecting crops in different agro-climatic regions.

Details

Title
High-Throughput Sequencing Reveals Differential Begomovirus Species Diversity in Non-Cultivated Plants in Northern-Pacific Mexico
Author
Rodríguez-Negrete, Edgar Antonio 1 ; Morales-Aguilar, Juan José 2 ; Domínguez-Duran, Gustavo 2 ; Torres-Devora, Gadiela 2 ; Camacho-Beltrán, Erika 2 ; Leyva-López, Norma Elena 2 ; Voloudakis, Andreas E 3 ; Bejarano, Eduardo R 4 ; Méndez-Lozano, Jesús 2   VIAFID ORCID Logo 

 Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico 
 Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Sinaloa 81101, Mexico 
 Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece 
 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain 
First page
594
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535287986
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.