Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Optical Coherence Tomography Angiography (OCTA) constitutes a new non-invasive ophthalmic image modality that allows the precise visualization of the micro-retinal vascularity that is commonly used to analyze the foveal region. Given that there are many systemic and eye diseases that affect the eye fundus and its vascularity, the analysis of that region is crucial to diagnose and estimate the vision loss. The Visual Acuity (VA) is typically measured manually, implying an exhaustive and time-consuming procedure. In this work, we propose a method that exploits the information of the OCTA images to automatically estimate the VA with an accurate error of 0.1713.

Details

Title
Automatic Visual Acuity Estimation by Means of Computational Vascularity Biomarkers Using Oct Angiographies
Author
Díaz, Macarena 1   VIAFID ORCID Logo  ; Díez-Sotelo, Marta 2   VIAFID ORCID Logo  ; Gómez-Ulla, Francisco 3 ; Novo, Jorge 1   VIAFID ORCID Logo  ; Penedo, Manuel Francisco G 1 ; Ortega, Marcos 1 

 Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, 15006 A Coruña, Spain; [email protected] (J.N.); [email protected] (M.F.G.P.); [email protected] (M.O.); Centro de Investigación CITIC, Universidade da Coruña, 15071 A Coruña, Spain 
 Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain; [email protected] (M.D.-S.); [email protected] (F.G.-U.) 
 Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain; [email protected] (M.D.-S.); [email protected] (F.G.-U.); Instituto Oftalmológico Gómez-Ulla, 15706 Santiago de Compostela, Spain 
First page
4732
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535414865
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.