Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to reduce the cost of the flight controller and improve the control accuracy of solar-powered unmanned aerial vehicle (UAV), three state estimation algorithms based on the extended Kalman filter (EKF) with different structures are proposed: Three-stage series, full-state direct and indirect state estimation algorithms. A small hand-launched solar-powered UAV without ailerons is used as the object with which to compare the algorithm structure, estimation accuracy, and platform requirements and application. The three-stage estimation algorithm has a position accuracy of 6 m and is suitable for low-cost small, low control precision UAVs. The precision of full-state direct algorithm is 3.4 m, which is suitable for platforms with low-cost and high-trajectory tracking accuracy. The precision of the full-state indirect method is similar to the direct, but it is more stable for state switching, overall parameters estimation, and can be applied to large platforms. A full-scaled electric hand-launched UAV loaded with the three-stage series algorithm was used for the field test. Results verified the feasibility of the estimation algorithm and it obtained a position estimation accuracy of 23 m.

Details

Title
Low-Cost Sensors State Estimation Algorithm for a Small Hand-Launched Solar-Powered UAV
Author
Guo, An 1   VIAFID ORCID Logo  ; Zhou, Zhou 1 ; Zhu, Xiaoping 2 ; Bai, Fan 1 

 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (A.G.); [email protected] (F.B.) 
 Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] 
First page
4627
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535480426
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.