Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-throughput data analysis challenges in laboratory automation and lab-on-a-chip devices’ applications are continuously increasing. In cell culture monitoring, specifically, the electrical cell-substrate impedance sensing technique (ECIS), has been extensively used for a wide variety of applications. One of the main drawbacks of ECIS is the need for implementing complex electrical models to decode the electrical performance of the full system composed by the electrodes, medium, and cells. In this work we present a new approach for the analysis of data and the prediction of a specific biological parameter, the fill-factor of a cell culture, based on a polynomial regression, data-analytic model. The method was successfully applied to a specific ECIS circuit and two different cell cultures, N2A (a mouse neuroblastoma cell line) and myoblasts. The data-analytic modeling approach can be used in the decoding of electrical impedance measurements of different cell lines, provided a representative volume of data from the cell culture growth is available, sorting out the difficulties traditionally found in the implementation of electrical models. This can be of particular importance for the design of control algorithms for cell cultures in tissue engineering protocols, and labs-on-a-chip and wearable devices applications.

Details

Title
Data-Analytics Modeling of Electrical Impedance Measurements for Cell Culture Monitoring
Author
García, Elvira 1   VIAFID ORCID Logo  ; Pérez, Pablo 2 ; Olmo, Alberto 2   VIAFID ORCID Logo  ; Díaz, Roberto 3 ; Huertas, Gloria 4 ; Yúfera, Alberto 2   VIAFID ORCID Logo 

 Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes, SN, 41012 Sevilla, Spain; [email protected] (E.G.); [email protected] (P.P.); [email protected] (A.Y.) 
 Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes, SN, 41012 Sevilla, Spain; [email protected] (E.G.); [email protected] (P.P.); [email protected] (A.Y.); Instituto de Microelectrónica de Sevilla, Universidad de Sevilla (IMSE-CNM-CSIC), Av. Américo Vespucio, 28, 41092 Sevilla, Spain; [email protected] 
 R & D Department, Treelogic S.L. 28223 Pozuelo de Alarcón, Spain; [email protected]; Departamento de Teoría de la Señal y Comunicaciones, Universidad Carlos III de Madrid, Av. De la Universidad 30, 28911 Leganés, Spain 
 Instituto de Microelectrónica de Sevilla, Universidad de Sevilla (IMSE-CNM-CSIC), Av. Américo Vespucio, 28, 41092 Sevilla, Spain; [email protected]; Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Av. Reina Mercedes, SN, 41012 Sevilla, Spain 
First page
4639
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535481430
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.