Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In many actual applications, fused image is essential to contain high-quality details for achieving a comprehensive representation of the real scene. However, existing image fusion methods suffer from loss of details because of the error accumulations of sequential tasks. This paper proposes a novel fusion method to preserve details of infrared and visible images by combining new decomposition, feature extraction, and fusion scheme. For decomposition, different from the most decomposition methods by guided filter, the guidance image contains only the strong edge of the source image but no other interference information so that rich tiny details can be decomposed into the detailed part. Then, according to the different characteristics of infrared and visible detail parts, a rough convolutional neural network (CNN) and a sophisticated CNN are designed so that various features can be fully extracted. To integrate the extracted features, we also present a multi-layer features fusion strategy through discrete cosine transform (DCT), which not only highlights significant features but also enhances details. Moreover, the base parts are fused by weighting method. Finally, the fused image is obtained by adding the fused detail and base part. Different from the general image fusion methods, our method not only retains the target region of source image but also enhances background in the fused image. In addition, compared with state-of-the-art fusion methods, our proposed fusion method has many advantages, including (i) better visual quality of fused-image subjective evaluation, and (ii) better objective assessment for those images.

Details

Title
Infrared and Visible Image Fusion through Details Preservation
Author
Liu, Yaochen; Ji, Yuanyuan; Xu, Wenhai
First page
4556
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535493437
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.