Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, multispectral Light Detection and Ranging (LiDAR) data were utilized to improve delineation of individual tree crowns (ITC) as an important step in individual tree analysis. A framework to integrate spectral and height information for ITC delineation was proposed, and the multi-scale algorithm for treetop detection developed in one of our previous studies was improved. In addition, an advanced region-based segmentation method that used detected treetops as seeds was proposed for segmentation of individual crowns based on their spectral, contextual, and height information. The proposed methods were validated with data acquired using Teledyne Optech’s Titan LiDAR sensor. The sensor was operated at three wavelengths (1550 nm, 1064 nm, and 532 nm) within a study area located in the city of Toronto, ON, Canada. The proposed method achieved 80% accuracy, compared with manual delineation of crowns, considering both matched and partially matched crowns, which was 12% higher than that obtained by the earlier marker-controlled watershed (MCW) segmentation technique. Furthermore, the results showed that the integration of spectral and height information improved ITC delineation using either the proposed framework or MCW segmentation, compared with using either spectral or height information individually.

Details

Title
Individual Tree Crown Delineation Using Multispectral LiDAR Data
Author
Faizaan Naveed 1 ; Hu, Baoxin 1 ; Wang, Jianguo 1 ; Hall, G Brent 2 

 Department of Earth and Space Science and Engineering, York University, Keele Street, Toronto 4700, ON M3J 1P3, Canada; [email protected] (F.N.); [email protected] (J.W.) 
 Education and Research, Esri Canada, 900-12 Concorde Pl, Toronto 4700, ON M3C 3R8, Canada; [email protected] 
First page
5421
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535499937
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.