Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nowadays, more than half of the world’s population lives in urban areas, and this number continues increasing. Consequently, there are more and more scientific publications that analyze health problems of people associated with living in these highly urbanized locations. In particular, some of the recent work has focused on relating people’s health to the quality and quantity of urban green areas. In this context, and considering the huge amount of land area in large cities that must be supervised, our work seeks to develop a deep learning-based solution capable of determining the level of health of the land and to assess whether it is contaminated. The main purpose is to provide health institutions with software capable of creating updated maps that indicate where these phenomena are presented, as this information could be very useful to guide public health goals in large cities. Our software is released as open source code, and the data used for the experiments presented in this paper are also freely available.

Details

Title
Deep Green Diagnostics: Urban Green Space Analysis Using Deep Learning and Drone Images
Author
Moreno-Armendáriz, Marco A 1   VIAFID ORCID Logo  ; Calvo, Hiram 1   VIAFID ORCID Logo  ; Duchanoy, Carlos A 2   VIAFID ORCID Logo  ; López-Juárez, Anayantzin P 3   VIAFID ORCID Logo  ; Vargas-Monroy, Israel A 3   VIAFID ORCID Logo  ; Miguel Santiago Suarez-Castañon 3   VIAFID ORCID Logo 

 Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Ciudad de México 07738, Mexico; [email protected] (H.C.); [email protected] (C.A.D.) 
 Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Ciudad de México 07738, Mexico; [email protected] (H.C.); [email protected] (C.A.D.); Cátedra CONACyT, Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n, Ciudad de México 07738, Mexico 
 Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n, Col. Lindavista, Ciudad de México 07738, Mexico; [email protected] (A.P.L.-J.); [email protected] (I.A.V.-M.); [email protected] (M.S.S.-C.) 
First page
5287
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535557791
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.