Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A heatsink is a large experimental device which is used to simulate the outer space environment. In this paper, a Raman-based distributed temperature sensor was used for real-time and continuous heatsink temperature monitoring, and a special Raman-based distributed temperature sensing method and system have been proposed. This method takes advantage of three calibration parameters (Δα, γ,C) to calculate the temperature. These three parameters are related to the attenuation of the optical fiber, the Raman translation, and the difference of optoelectronic conversion, respectively. Optical time domain reflectometry was used to calculate the location. A series of heatsink temperature measurement experiments were performed in a vacuum and −173 °C environment. When the temperature dropped to −100 °C, the parameter Δα was found to vary. A method was proposed to recalculate Δα and modify the traditional Raman fiber temperature equation. The results of the experiments confirmed the validity of this modified Raman fiber temperature equation. Based on this modified equation, the temperature field in the heatsink was calculated. The Raman-based distributed temperature sensor has potential applications in temperature measurement and judging the occurrence of faults in space exploration.

Details

Title
Monitoring a Heatsink Temperature Field Using Raman-Based Distributed Temperature Sensor in a Vacuum and −173 °C Environment
Author
Zhang, Jingchuan 1 ; Peng, Wei 2   VIAFID ORCID Logo  ; Liu, Qingbo 2   VIAFID ORCID Logo 

 Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China; [email protected] 
 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; [email protected] 
First page
4186
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535562809
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.