Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a fresh state error feedback linearization control method with disturbance observer (DOB) and L2 gain for a quadruple-tank liquid-level system. Firstly, in terms of the highly nonlinear and strong coupling characteristics of the quadruple-tank system, a state error feedback linearization technique is employed to design the controller to achieve liquid-level position control and tracking control. Secondly, DOB is purposed to estimate uncertain exogenous disturbances and applied to compensation control. Moreover, an L2-gain disturbance attenuation technology is designed to resolve one class of disturbance problem by uncertain parameter perturbation existing in the quadruple-tank liquid-level system. Finally, compared with the classical proportion integration differentiation (PID) and sliding mode control (SMC) methods, the extensive experimental results validate that the proposed strategy has good position control, tracking control, and disturbance rejection performances.

Details

Title
Disturbance Observer and L2-Gain-Based State Error Feedback Linearization Control for the Quadruple-Tank Liquid-Level System
Author
Meng, Xiangxiang; Xu, Tao; Wu, Herong
First page
5500
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535581117
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.