Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The important topic of modelling tanks filled with phase change materials (PCMs) is discussed in this article. Due to the increasing use of heating and cooling installations, tanks containing two types of PCMs are the subject of many experimental analyses. However, there are still deficiencies in their models, which are presented in this paper. The theory model was created in order to design two tanks, each with a volume of 2 m3. They were filled with water and containers with two PCMs. The modelled tanks were meant to replace the existing water tanks that were previously used in the solar heating and cooling installation in a research building located in the southern part of Spain. After the tanks were assembled, the model was validated during the summer period when the designed storage tanks supported the operation of the solar system operating in the cooling mode. The created model consists of a 1D description of the heat transfer in the storage tank, and also a 1D description of the phase change in the containers with the PCMs. The model takes into account the front of the phase change and also discusses its impact on the thermal efficiency of the tanks. The agreement of the water output temperature is very good and validates the model, which can then be used to provide further details on the operation of the storage system—in particular, heat fluxes or a fraction of solid or liquid PCM.

Details

Title
Model for the Discharging of a Dual PCM Heat Storage Tank and Its Experimental Validation
Author
Nemś, Artur 1   VIAFID ORCID Logo  ; Puertas, Antonio M 2 

 Department of Thermodynamics and Renewable Energy Sources, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland 
 Dpto. de Química y Física, Universidad de Almería, 04120 Almería, Spain; [email protected]; CIESOL, Joint Center University of Almería-CIEMAT, 04120 Almería, Spain 
First page
5687
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535618993
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.