It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Exciton–polariton Bose–Einstein condensation (EP BEC) is of crucial importance for the development of coherent light sources and optical logic elements, as it creates a new state of matter with coherent nature and nonlinear behaviors. The demand for room temperature EP BEC has driven the development of organic polaritons because of the large binding energies of Frenkel excitons in organic materials. However, the reliance on external high-finesse microcavities for organic EP BEC results in poor compactness and integrability of devices, which restricts their practical applications in on-chip integration. Here, we demonstrate room temperature EP BEC in organic single-crystal microribbon natural cavities. The regularly shaped microribbons serve as waveguide Fabry–Pérot microcavities, in which efficient strong coupling between Frenkel excitons and photons leads to the generation of EPs at room temperature. The large exciton–photon coupling strength due to high exciton densities facilitates the achievement of EP BEC. Taking advantages of interactions in EP condensates and dimension confinement effects, we demonstrate the realization of controllable output of coherent light from the microribbons. We hope that the results will provide a useful enlightenment for using organic single crystals to construct miniaturized polaritonic devices.
The use of room temperature exciton–polariton Bose–Einstein condensation is limited by the need for external high-finesse microcavities. The authors generate room temperature EPs with single-crystal microribbons as waveguide Fabry–Pérot microcavities, and demonstrate controllable output of coherent light.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Chinese Academy of Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 Chinese Academy of Sciences, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Shanghai, China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 Chinese Academy of Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309)