Abstract

The article expands on the ongoing assessment of the reduced order model proposed by some of the authors for the geometric definition and noncavitating performance evaluation in the preliminary design and parametric optimization of mixed-flow centrifugal turbopumps. Some of the dynamically most significant predictions of the model are compared with the experimentally validated URANS (Unsteady Reynolds-Averaged Navier-Stokes) simulations of the non-cavitating flow through a typical six-bladed unshrouded mixed-flow turbopump for liquid propellant rocket engines operating at both design and off-design flow conditions and different values of the impeller clearance. The observed discrepancies can be explained in terms of the simplifying assumptions introduced for the development of the model and their relative magnitude (< ±10%) does not adversely interfere with the accurate prediction of the turbopump performance over a wide range of operating conditions above and below design flow rate. Together with earlier experimental validations, the results dramatically confirm the capability of the proposed model to generate useful engineering solutions of the turbopump preliminary design problem at a negligible fraction of the computational cost required by 3D numerical simulations.

Details

Title
Turbopump Design: Comparison of Numerical Simulations to an Already Validated Reduced-Order Model
Author
Apollonio, A 1 ; Anderlini, A 1 ; Valentini, D 2 ; Pace, G 2 ; Pasini, A 1 ; Salvetti, M V 1 ; L D’Agostino 1 

 Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy 
 Researcher, Italy 
Publication year
2021
Publication date
May 2021
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535626373
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.