Abstract

According to various worldwide statistics, most car accidents occur solely due to human error. The person driving a car needs to be alert, especially when travelling through high traffic volumes that permit high-speed transit since a slight distraction can cause a fatal accident. Even though semi-automated checks, such as speed detecting cameras and speed barriers, are deployed, controlling human errors is an arduous task. The key causes of driver’s distraction include drunken driving, conversing with co-passengers, fatigue, and operating gadgets while driving. If these distractions are accurately predicted, the drivers can be alerted through an alarm system. Further, this research develops a deep convolutional neural network (deep CNN) models for predicting the reason behind the driver’s distraction. The deep CNN models are trained using numerous images of distracted drivers. The performance of deep CNN models, namely the VGG16, ResNet, and Xception network, is assessed based on the evaluation metrics, such as the precision score, the recall/sensitivity score, the F1 score, and the specificity score. The ResNet model outperformed all other models as the best detection model for predicting and accurately determining the drivers’ activities.

Details

Title
Performance Comparison of Deep CNN Models for Detecting Driver’s Distraction
Author
Srinivasan, Kathiravan; Garg, Lalit; Datta, Debajit; Alaboudi, Abdulellah A; Jhanjhi, N Z; Agarwal, Rishav; Anmol George Thomas
Pages
4109-4124
Section
ARTICLE
Publication year
2021
Publication date
2021
Publisher
Tech Science Press
ISSN
1546-2218
e-ISSN
1546-2226
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535728534
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.