Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We study the compound flooding processes that occurred in Hurricane Florence (2018), which was accompanied by heavy precipitation, using a 3D creek-to-ocean hydrodynamic model. We examine the important role played by barrier islands in the observed compound surges in the coastal watershed. Locally very high resolution is used in some watershed areas in order to resolve small features that turn out to be critical for capturing the observed high water marks locally. The wave effects are found to be significant near barrier islands and have contributed to some observed over-toppings and breaches. Results from sensitivity tests applying each of the three major forcing factors (oceanic, fluvial, and pluvial) separately are succinctly summarized in a “dominance map” that highlights significant compound effects in most of the affected coastal watersheds, estuaries, and back bays behind the barrier islands. Operational forecasts based on the current model are being set up at NOAA to help coastal resource and emergency managers with disaster planning and mitigation efforts.

Details

Title
A cross-scale study for compound flooding processes during Hurricane Florence
Author
Ye, Fei 1 ; Huang, Wei 1   VIAFID ORCID Logo  ; Zhang, Yinglong J 1 ; Moghimi, Saeed 2 ; Myers, Edward 2 ; Pe'eri, Shachak 2 ; Hao-Cheng, Yu 1 

 Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, 23062, USA 
 NOAA National Ocean Service, Silver Spring, 20910, USA 
Pages
1703-1719
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
15618633
e-ISSN
16849981
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535760042
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.