It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
First-order reversal curve (FORC) measurements are broadly used for the characterization of complex magnetic nanostructures, but they can be inconclusive when quantifying the amount of different magnetic phases present in a sample. In this paper, we first establish a framework for extracting quantitative parameters from FORC measurements conducted on samples composed of a single type of magnetic nanostructure to interpret their magnetic properties. We then generalize our framework for the quantitative characterization of samples that are composed of 2–4 types of FeCo magnetic nanowires to determine the most reliable and reproducible parameters for a detailed analysis of samples. Finally, we conclude that the parameter with the best quantification potential, backfield remanence coercivity, does not require the full FORC measurement. Our approach provides an insightful path for fast, quantitative analysis of complex magnetic nanostructures, especially determination of the ratios of magnetic subcomponents present in multi-phase samples.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, United States of America; Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, United States of America
2 Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, United States of America; Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, United States of America