It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Dielectric metasurfaces support resonances that are widely explored both for far-field wavefront shaping and for near-field sensing and imaging. Their design explores the interplay between localised and extended resonances, with a typical trade-off between Q-factor and light localisation; high Q-factors are desirable for refractive index sensing while localisation is desirable for imaging resolution. Here, we show that a dielectric metasurface consisting of a nanohole array in amorphous silicon provides a favourable trade-off between these requirements. We have designed and realised the metasurface to support two optical modes both with sharp Fano resonances that exhibit relatively high Q-factors and strong spatial confinement, thereby concurrently optimizing the device for both imaging and biochemical sensing. For the sensing application, we demonstrate a limit of detection (LOD) as low as 1 pg/ml for Immunoglobulin G (IgG); for resonant imaging, we demonstrate a spatial resolution below 1 µm and clearly resolve individual E. coli bacteria. The combined low LOD and high spatial resolution opens new opportunities for extending cellular studies into the realm of microbiology, e.g. for studying antimicrobial susceptibility.
Dielectric metasurfaces have different Q-factor and light localisation requirements for sensing and imaging. Here, the authors present a dielectric metasurface, supporting two optical modes with sharp Fano resonances for high Q-factors and strong spatial confinement, allowing both sensing and imaging.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Barth, Isabel 1
; Pitruzzello Giampaolo 1
; Reardon, Christopher P 1
; Martins, Emiliano R 2 ; Krauss, Thomas F 1 1 University of York, Photonics Group, Department of Physics, York, UK (GRID:grid.5685.e) (ISNI:0000 0004 1936 9668)
2 University of São Paulo, São Carlos School of Engineering, Department of Electrical and Computer Engineering, São Carlos-SP, Brazil (GRID:grid.11899.38) (ISNI:0000 0004 1937 0722)




