It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
RNA–binding motif protein 24 (RBM24) acts as a multifunctional determinant of cell fate, proliferation, apoptosis, and differentiation during development by regulating premRNA splicing and mRNA stability. It is also implicated in carcinogenesis, but the functions of RBM24 in bladder cancer (BC) remain unclear. In the present study, we revealed that RBM24 was upregulated in BC tissues. Importantly, we found that a higher level of RBM24 was correlated with poor prognosis in BC patients. Overexpression of RBM24 promoted BC cell proliferation, while depletion of RBM24 inhibited BC cell proliferation in vivo and in vitro. Mechanistically, RBM24 positively regulated Runx1t1 expression in BC cells by binding to and enhancing Runx1t1 mRNA stability. Furthermore, Runx1t1 in turn promoted RBM24 expression by interacting with the transcription factor TCF4 and suppressing the transcription of miR-625-5p, which directly targets RBM24 and suppresses RBM24 expression. RBM24-regulated BC cell proliferation was moderated via the Runx1t1/TCF4/miR-625-5p feedback loop. These results indicate that the RBM24/Runx1t1/TCF4/miR-625-5p positive feedback loop participates in BC progression. Disruption of this pathway may be a potential therapeutic strategy for BC treatment.
Bladder cancer: Tracking down the molecular mechanisms
A protein called RBM24 promotes progression of bladder cancer (BC) by forming a positive feedback loop with a specific transcription factor, driving cancer cell proliferation. Survival rates for BC are low, and the current imperfect understanding of the underlying mechanisms makes it difficult to treat. Ping-Ying Guo at Hebei Medical University in Shijiazhuang, China, and co-workers investigated the role of RBM24, known to be involved in other cancers, and found increased levels in BC tissues. Higher levels were associated with a poor prognosis. Further investigation revealed that RBM24 boosts levels of the transcription factor, which suppresses a molecule that in turn suppresses RBM24, forming a positive feedback loop promoting BC cell proliferation. Interrupting the feedback loop decreased tumor size in a mouse model. These results may help identify better treatments for BC.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Second Hospital of Hebei Medical University, Department of Urology, Shijiazhuang, P.R. China (GRID:grid.452702.6) (ISNI:0000 0004 1804 3009); Hebei Institute of Urology, Shijiazhuang, P.R. China (GRID:grid.452702.6)
2 The Second Hospital of Hebei Medical University, Department of Urology, Shijiazhuang, P.R. China (GRID:grid.452702.6) (ISNI:0000 0004 1804 3009)