It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Zbtb7c is a proto-oncoprotein that controls the cell cycle and glucose, glutamate, and lipid metabolism. Zbtb7c expression is increased in the liver and white adipose tissues of aging or high-fat diet-fed mice. Knockout or knockdown of Zbtb7c gene expression inhibits the adipocyte differentiation of 3T3-L1 cells and decreases adipose tissue mass in aging mice. We found that Zbtb7c was a potent transcriptional repressor of SIRT1 and that SIRT1 was derepressed in various tissues of Zbtb7c-KO mice. Mechanistically, Zbtb7c interacted with p53 and bound to the proximal promoter p53RE1 and p53RE2 to repress the SIRT1 gene, in which p53RE2 was particularly critical. Zbtb7c induced p53 to interact with the corepressor mSin3A-HADC1 complex at p53RE. By repressing the SIRT1 gene, Zbtb7c increased the acetylation of Pgc-1α and Pparγ, which resulted in repression or activation of Pgc-1α or Pparγ target genes involved in lipid metabolism. Our study provides a molecular target that can overexpress SIRT1 protein in the liver, pancreas, and adipose tissues, which can be beneficial in the treatment of diabetes, obesity, longevity, etc.
Metabolic disease: SIRT1 gene, a potential therapeutic target
Targeting a regulatory DNA sequence linked to the repression of a critical enzyme during metabolic diseases could prove valuable for future therapies. The SIRT1 enzyme is involved in metabolic processes and stress resistance, and its dysregulation is linked to obesity and diabetes development. SIRT1 expression also decreases with aging and stress, but the precise regulation mechanisms are unclear. In experiments on aging mice and mice fed a high-fat diet, Man-Wook Hur at Yonsei University in Seoul, South Korea, and co-workers demonstrated that SIRT1 expression is repressed by a protein called Zbtb7c, which is highly expressed in fat and liver tissues. Aging mice without the Zbtb7c-encoding gene had less fatty tissue than controls. Zbtb7c represses the SIRT1 gene by interacting with protein p53. A sequence critical to this repression mechanism may provide a therapeutic target.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Yonsei University School of Medicine, Brain Korea FOUR Project for Medical Science, Department of Biochemistry & Molecular Biology, Seoul, Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454); Korea Advanced Institute of Science and Technology, Graduate School of Medical Science and Engineering, DaeJeon, Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500)
2 Yonsei University School of Medicine, Brain Korea FOUR Project for Medical Science, Department of Biochemistry & Molecular Biology, Seoul, Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454)
3 Korea Advanced Institute of Science and Technology, Graduate School of Medical Science and Engineering, DaeJeon, Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500); Korea Advanced Institute of Science and Technology, KAIST Institute for the BioCentury, Daejeon, Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500)