It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Coronavirus disease 2019 (COVID-19), the current pandemic disease, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Type I and III interferons (IFNs) are innate cytokines that are important in the first-line defense against viruses. Similar to many other viruses, SARS-CoV-2 has evolved mechanisms for evading the antiviral effects of type I and III IFNs at multiple levels, including the induction of IFN expression and cellular responses to IFNs. In this review, we describe the innate sensing mechanisms of SARS-CoV-2 and the mechanisms used by SARS-CoV-2 to evade type I and III IFN responses. We also discuss contradictory reports regarding impaired and robust type I IFN responses in patients with severe COVID-19. Finally, we discuss how delayed but exaggerated type I IFN responses can exacerbate inflammation and contribute to the severe progression of COVID-19.
SARS-CoV-2: exploring virus-triggered immune system dysfunction
Extensive studies into how SARS-CoV-2 manipulates the immune system and influences the activity of host proteins are needed to improve treatments for COVID-19. SARS-CoV-2 evades or blocks elements of the immune system, including the antiviral activity of type I and type III interferons (IFN). You-Me Kim and Eui-Cheol Shin at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea, reviewed understanding of how SARS-CoV-2 inhibits IFN responses. In infected cells, SARS-CoV-2 proteins use diverse methods to inhibit host IFN pathways, but type I IFN responses are still triggered in non-infected immune cells. The researchers believe this may explain the delayed but exaggerated type I IFN responses that contribute to the hyper-inflammation seen in critically ill patients. They call for further investigations into IFN and inflammatory responses in SARS-CoV-2 infection.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Medical Science and Engineering, Daejeon, Republic of Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500); KAIST, Center for Epidemic Preparedness, Daejeon, Republic of Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500)