This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Digital hydraulic cylinders have great application potential because of their advantages of simple structure, low cost, high control accuracy, and suitable for application in harsh working environments [1]. In recent years, digital hydraulic cylinders have been applied to digital excavating robots, loading robots, and so on. The digital hydraulic cylinder is essentially a nonlinear system [2] in which nonlinear friction will cause the system position static difference, reduce system stability, increase speed zero-crossing distortion, and limit cycle oscillation and other phenomena. Therefore, the friction of the system must be compensated and suppressed to improve the performance of digital hydraulic cylinders [3].
Friction compensation can be divided into nonmodel and model-based compensation. Nonmodel friction compensation control includes PD, robust, and sliding mode control. Ren et al. [4] used a high-gain PD controller to suppress friction nonlinearity. The differential term in the PD controller increases system damping, which can improve the low-speed tracking performance of the system to a certain extent and suppress the crawling phenomenon; however, it will still produce a steady-state error. Simply increasing the system gain can only reduce the steady-state error, but it does not eliminate it, causing the stability of the system to deteriorate. Wang and Chai [5] designed an adaptive fuzzy compensation PD controller based on PD, which can effectively improve the tracking performance of the system. Hu et al. [6] used the disturbance observer-based robust control for friction compensation. This method can improve the stability of the system. However, because it is a linear compensation, the degree of compensation for friction nonlinearity depends on the bandwidth of the filter. The increase in bandwidth is limited by factors, such as mechanical resonance in the actual system, which is the exact problem with this compensation method. Feng and Li et al. [7–9] designed a sliding mode variable structure control friction compensator. Although the linear sliding mode determines the deviation between the system state and the given trajectory converges exponentially, that is, the system state continues to approach the given trajectory, the given trajectory cannot be reached forever and the control quantity has a jitter phenomenon. Model-based adaptive compensation method for online friction compensation is generally used as a solution for most researchers. The model-based compensation method usually estimates the parameters of the friction model online and adds the friction compensation term to the control algorithm to perform online compensation for the friction [10]. Liu and Wang et al. [11, 12] proposed a decomposition control to achieve friction compensation, but the friction model uses a static friction model, and the effect after system compensation is not very ideal. The more the friction model can reflect the dynamic and static characteristics of the friction force in the system, the better the friction compensation effect. Friction models, such as Coulomb + viscous friction, exponential friction, and Karnopp are static friction models, which make it impossible to predict the dynamic friction behavior characteristics. Meanwhile, the Dhal model, LuGre model, and Bliman–Sorine are all dynamic friction models. The LuGre model is the latest achievement in this field and can describe the dynamic and static characteristics of friction well [13–15]. Xiang et al. [16] proposed an adaptive friction compensation method based on the LuGre model. The backstepping method was used to design an adaptive friction compensation controller. This method could effectively suppress the adverse effects of friction interference on the servo system. Wang et al. [17] proposed an adaptive friction compensation method based on the observer/filter structure based on the LuGre model, which was verified by the simulation to improve the tracking performance of the system. Han et al. [18] adopted the sliding mode variable structure control and neural network control to estimate the friction model parameters and found that it could better suppress system disturbance and friction nonlinearity and improve the positioning accuracy and robustness of the system. Mobayen and Tchier [19] proposed a new state-feedback stabilization control technique for a class of uncertain chaotic systems with Lipschitz nonlinearity conditions.
Chang et al. [20] considered the random uncertainty in-vehicle system model, and based on methods
In this paper, based on the ideas of reference [25], the adaptive friction compensation algorithm is established for the characteristics of digital hydraulic cylinders. The dual-observer structure is designed using the most complete dynamic friction model, i.e., LuGre model, and the parameters in the friction model are estimated online. In online compensation for nonlinear friction, the controller is divided into a friction compensation item and a robust control item. The friction model compensation item is used to suppress nonlinear friction. The robust control item can improve the robust performance of the entire system when an external disturbance occurs. The Lyapunov method is used to prove the global asymptotic stability of the closed-loop system using the adaptive friction compensation method. Finally, Simulink is used to simulate the system performance.
2. Digital Hydraulic Cylinder Dynamic Analysis
The main links of the digital hydraulic link and the system schematic diagram are shown in Figure 1.
[figure omitted; refer to PDF]2.1. Feedback Nut and Ball Screw Conversion Mechanism Model
The valve opening is a compound movement in space under the combined action of the feedback nut and the ball screw. That is, the input angle of the stepping motor is transformed into the displacement
2.2. Stepper Motor Model
The input signal of the stepper motor is the number of pulses, and the output is the angular displacement, which can be approximated using a proportional component. Its gain is expressed by
2.3. Feedback Loop Model
The displacement sensor converts the displacement signal output by the digital hydraulic cylinder into an electrical signal and feeds it back to the input terminal. Its frequency response is much greater than the frequency response of the system. Therefore, it can be considered as a proportional link and expressed by gain
2.4. Hydraulic Cylinder Friction Model
The LuGre friction model can better describe the static and dynamic friction effects of the system. Using the LuGre model to investigate the friction force
2.5. Valve Control Cylinder Link
The two throttle windows of the spool are assumed to be matched and symmetrical, the charge oil pressure is constant, and the spill pressure is constantly zero. The available valve port linearized flow equation is as follows:
Assuming that the connecting pipeline between the valve and the hydraulic cylinder is short and thick, the pressure loss and pipeline dynamics in the pipeline can be ignored. The oil temperature and the volumetric elastic modulus are constant. The internal and external leakages of the hydraulic cylinder are both laminar flow. The available hydraulic cylinder flow continuity equation is as follows:
The balanced equation of the output force of the hydraulic cylinder and the external load force is as follows:
The goal of designing the controller
3. Adaptive Friction Compensation
Because the three parameters,
The following equation is obtained from equations (3) and (4):
Bring equations (2) and (6) to equation (5) to obtain the following equation:
Establish a systematic error equation as follows:
Bring equation (9) to equation (7) to obtain equation (12):
Because the average deformation z of the bristle in the LuGre model is not measurable, a state observer is required to estimate the state variable z online. The two-state observers are as follows:
Substituting equations (12) and (13) into equation (11), we obtain the following equation:
Because
Let the adaptive robust controller of the system be
The control law of the friction compensation term is
Bring equations (18) into (19) to obtain the following equation:
To overcome the system uncertainty caused by uncertain system parameters and external interference, the design satisfies the following equations:
Therefore, the design robust control term
Let the Lyapunov function be
The adaptive laws for setting
Differentiate V (x, t) and bring equations (25)–(27) to obtain the following equation:
Because
4. Simulation and Analysis
A friction compensation simulation test is performed on the digital hydraulic cylinder based on the LuGre friction model based on the adaptive friction compensation controller designed above.
Figure 2 is a simulation block diagram of adaptive friction compensation, and Figure 3 is a system simulation model built using MATLAB/Simulink simulation software. The main parameters of the digital hydraulic cylinder studied in this paper are as follows: the effective area of the hydraulic cylinder is
4.1. Steady-State Limit Cycle Oscillation
Considering the step signal input, given the input position signal
The piston displacement curve with PID control and adaptive control law is shown in Figure 4. The enlarged curve in Figure 4(a) shows that the system with PID control has a stability limit cycle. If the system part suffers from wears or the temperature is affected by the operation, the original system will become an unstable system. The system is in a critically stable state. Figure 4(b) shows that the static difference of the system after adding adaptive friction compensation becomes zero, and therefore, adding adaptive friction compensation can effectively eliminate the limit cycle oscillation phenomenon of the system and improve the tracking accuracy of the system. Figures 4(a) and 4(b) also show that the response speed of the system with adaptive friction compensation has been improved considerably. The adaptive friction compensation strategy designed in this paper can effectively reduce the system static error caused by friction nonlinearity and the stability limit cycle phenomenon, but the response speed of the system decreased.
[figures omitted; refer to PDF]
4.2. Low-Speed Crawl
After considering the slope input, a slope with a speed of
4.3. Speed Dead Zone and Position Truncation
Considering the triangle wave input, the triangle wave with a period of 0.8 s and a speed of
[figures omitted; refer to PDF]
Figures 6(a) and 6(b) show that the position curve with PID control added had obvious jitter and a large error, while the position curve with adaptive friction compensation control added has no obvious jitter, and the error is relatively small. Figure 6(c) shows that the position error with PID control is about
5. Conclusion
This paper analyzes the effects of nonlinear friction on the performance of digital hydraulic cylinders, establishes a mathematical model of digital hydraulic cylinders with the LuGre friction model, and designs a dual-observer structure to estimate the unobservable state variables in the friction model. To address the parameters with inconsistent changes, an adaptive friction compensation control algorithm is designed, parameters in the friction model are estimated online, and a nonlinear friction is compensated online. The Lyapunov method is used to prove the stability of the closed-loop system using the adaptive friction compensation method. Finally, the MATLAB/Simulink is used to simulate the system performance. The test results show that because of the difference between the maximum static friction force and the Coulomb friction force in nonlinear friction, the system will have a large static difference or even a steady-state limit cycle oscillation phenomenon. The “stick-slip” phenomenon in the nonlinear friction will cause the low-speed creeping phenomenon to occur in the system. The nonlinearity of the preslip and low-speed friction forces will cause the system’s “position shaving” and “speed dead zone” phenomena. The abovementioned phenomenon can be improved effectively by adding an adaptive friction compensation control strategy. This control method has practical application value for improving the performance index of the digital hydraulic cylinder.
Future works should consider the unmodeled dynamics of the system, and the T-S fuzzy system should be used to approximate the unmodeled dynamics. At the same time, the adaptive adjustment fuzzy identification parameters should be considered and the Lyapunov function should be used to prove the stability of the control system and finally realize that the system output can track the expected output well.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (51574140), China Postdoctoral Science Foundation (2020M682268 and 2020M672089), National Key Research and Development Plan of Ministry of Science and Technology of the People’s Republic of China (2017YFC0804305), and Major Science and Technology Innovation Projects in Shandong Province (2019SDZY04).
[1] S. J. Xu, J. J. Lou, L. K. Peng, "Nonlinear robust position tracking control of digital hydraulic cylinder with regard to uncertainties and disturbance," Journal of Naval University of Engineer, vol. 27 no. 2, pp. 74-80, 2015.
[2] J. Chen, J. F. Xing, L. K. Peng, "Analysis and experiment on nonlinear dynamic characteristics of digital hydraulic cylinder," Mechanical Science and Technology for Aerospace Engineering, vol. 35 no. 7, pp. 1035-1042, 2016.
[3] B. Friedland, Y.-J. Park, "On adaptive friction compensation," IEEE Transactions on Automatic Control, vol. 37 no. 10, pp. 1609-1612, DOI: 10.1109/9.256395, 1992.
[4] Y. P. Ren, S. Y. Li, "An approach for nonlinear PD controller design," Control Engineering of China, vol. 13 no. 3, pp. 224-229, 2005.
[5] Y. F. Wang, T. Y. Chai, "Adaptive fuzzy control method for dynamic friction compensation," Proceedings of the CSEE, vol. 25 no. 2, pp. 139-144, 2005.
[6] J. H. Hu, Y. L. Hou, Q. Gao, Y. Z. Chen, S. P. Qu, "Sliding-mode control for tank gun controlling system based on disturbance observer," Electronics Optics &Control, vol. 25 no. 3, pp. 98-101, 2018.
[7] Y. Feng, X. Man, "Non-singular terminal sliding mode control of rigid manipulators," Automatica, vol. 38 no. 12, pp. 2159-2167, DOI: 10.1016/s0005-1098(02)00147-4, 2002.
[8] Y. Feng, S. Bao, X. H. Yu, "Design method of non-singular terminal sliding mode control systems," Control and Decision, vol. 17 no. 2, pp. 194-198, 2002.
[9] S. B. Li, K. Q. Li, J. Q. Wang, "Nonsingular and fast terminal sliding mode control method," Information and Control, vol. 38 no. 1, 2009.
[10] S. C. Southward, C. J. Radcliffe, C. R. MacCluer, "Robust nonlinear stick-slip friction compensation," Journal of Dynamic Systems, Measurement, and Control, vol. 113 no. 4, pp. 639-645, DOI: 10.1115/1.2896469, 1991.
[11] G. Liu, "Decomposition-based friction compensation using a parameter linearization approach," Proceedings of the 2001 IEEE International Conference on Robotics &Automation, Seoul, pp. 1155-1160, DOI: 10.1109/ROBOT.2001.932767, .
[12] Q. W. Wang, Z. H. Liu, "Nonlinear friction decomposition control of flight motion simulator," Computer Simulation, vol. 23 no. 7, pp. 275-279, 2006.
[13] Q. Liu, E. R. Lianjie, J. K. Liu, "Overview of Charcteristics,Modeling and compensation of nonlinear friction in servo systems," Systems Engineering and Electrionics, vol. 24 no. 11, pp. 45-52, 2002.
[14] A. Tesfaye, H. S. Ho Seong Lee, M. Tomizuka, "A sensitivity optimization approach to design of a disturbance observer in digital motion control systems," IEEE/ASME Transactions on Mechatronics, vol. 5 no. 1, pp. 32-38, DOI: 10.1109/3516.828587, 2000.
[15] A. Yazdizadeh, K. Khorasani, "Adaptive friction compensation based on the Lyapunov scheme," Proceedings of the 1996 IEEE International Conference on Control Applications, pp. 1060-1065, DOI: 10.1109/CCA.1996.559070, .
[16] H. Xiang, W. B. Tan, X. F. Li, C. Y. Zhang, "Adaptive friction compensation based on LuGre model," Journal of Mechanical Engineering, vol. 48 no. 17, pp. 70-74, DOI: 10.3901/jme.2012.12.070, 2012.
[17] Z. S. Wang, Y. Wang, B. K. Su, "An adaptive friction compensation method for high-precision turntable system," Journal of South China University of Technology, vol. 35 no. 9, pp. 55-59, 2007.
[18] S. I. Han, C. S. Jeong, S. Y. Yang, "Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks?," Journal of Mechanical Science and Technology, vol. 26 no. 4, pp. 1149-1159, DOI: 10.1007/s12206-012-0213-1, 2012.
[19] S. Mobayen, F. Tchier, "Synchronization of A Class of uncertain chaotic systems with Lipschitz nonlinearities using state‐feedback control design: a matrix inequality approach," Asian Journal of Control, vol. 20 no. 1, pp. 71-85, DOI: 10.1002/asjc.1512, 2018.
[20] X. H. Chang, Y. Liu, M. Q. Shen, "Resilient control design for lateral motion regulation of intelligent vehicle," IEEE/ASMET Ransactions on Mechatronics, vol. 24 no. 6, pp. 2488-2497, DOI: 10.1109/tmech.2019.2946895, 2019.
[21] Y. Wang, B. Niu, H. Wang, N. Alotaibi, E. Abozinadah, "Neural network-based adaptive tracking control for switched nonlinear systems with prescribed performance: an average dwell time switching approach," Neurocomputing, vol. 435 no. 7, pp. 295-306, DOI: 10.1016/j.neucom.2020.10.023, 2021.
[22] M. Li, H. Xin, X. D. Zhao, D. Z. Guang, "Observer-based adaptive neural tracking control for output-constrained switched MIMO nonstrict-feedback nonlinear systems with unknown dead zone," Nonlinear Dynamics, vol. 99 no. 2, pp. 1019-1036, DOI: 10.1007/s11071-019-05322-w, 2020.
[23] Q. Zhang, Z. G. Yuan, D. Z. Xu, "An adaptivesecond order terminal sliding mode control for a class of uncertain nonlinear systems using disturbance observer," Control Theory & Applications, vol. 34 no. 2, pp. 179-187, 2017.
[24] X. J. Wei, L. Y. Zhang, "Anti-disturbance control based on disturbance observer for a class of nonlinear strict-feedback systems," Control and Decision, vol. 31 no. 9, pp. 1697-1701, 2016.
[25] L. Xu, B. Yao, "Adaptive robust control of mechanical systems with non-linear dynamic friction compensation," International Journal of Control, vol. 81 no. 2, pp. 167-176, DOI: 10.1080/00207170701390132, 2008.
[26] L. Liu, J. Chen, J. F. Xing, "Research on transfer function of digital hydraulic fin stabilizer system," Hydraulic and Pneumatic, vol. 11, pp. 97-100, 2012.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Shouling Jiang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
This paper aims to eliminate nonlinear friction from the performance of the digital hydraulic cylinder to enable it to have good adaptive ability. First, a mathematical model of a digital hydraulic cylinder based on the LuGre friction model was established, and then a dual-observer structure was designed to estimate the unobservable state variables in the friction model. The Lyapunov method is used to prove the global asymptotic stability of the closed-loop system using the adaptive friction compensation method. Finally, Simulink is used to simulate the system performance. The simulation results indicate that the addition of adaptive friction compensation control can effectively reduce system static error, suppress system limit loop oscillation, “position decapitation,” “speed dead zone,” and low-speed creep phenomena, and improve the overall performance of the digital hydraulic cylinder. The control method has practical application value for improving the performance index of the digital hydraulic cylinder.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 School of Mechanical Engineering, Liaoning Technical University, No. 88, Yulong Road, Fuxin, Liaoning 123000, China
2 Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong 266590, China
3 Shandong Provincial Key Laboratory of Robotics and Intelligent Technology, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong 266590, China; State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China