It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Highlights
A novel vacuum-assisted strategy is proposed to form N-doped carbon-encapsulated CoSe2 nanocrystals within hollow mesoporous carbon nanospheres (CoSe2@NC/HMCS) via a solid-state reaction.
The “dual confinement” by both the N-doped carbon matrix derived from 2-methylimidazole and the small-sized pores of the hollow mesoporous carbon nanospheres can effectively prevent the overgrowth of CoSe2 nanocrystals.
CoSe2@NC/HMCS exhibits an excellent electrochemical performance as the anode material for KIBs in terms of cycling stability and rate capability.
In this work, a novel vacuum-assisted strategy is proposed to homogenously form Metal–organic frameworks within hollow mesoporous carbon nanospheres (HMCSs) via a solid-state reaction. The method is applied to synthesize an ultrafine CoSe2 nanocrystal@N-doped carbon matrix confined within HMCSs (denoted as CoSe2@NC/HMCS) for use as advanced anodes in high-performance potassium-ion batteries (KIBs). The approach involves a solvent-free thermal treatment to form a Co-based zeolitic imidazolate framework (ZIF-67) within the HMCS templates under vacuum conditions and the subsequent selenization. Thermal treatment under vacuum facilitates the infiltration of the cobalt precursor and organic linker into the HMCS and simultaneously transforms them into stable ZIF-67 particles without any solvents. During the subsequent selenization process, the “dual confinement system”, composed of both the N-doped carbon matrix derived from the organic linker and the small-sized pores of HMCS, can effectively suppress the overgrowth of CoSe2 nanocrystals. Thus, the resulting uniquely structured composite exhibits a stable cycling performance (442 mAh g−1 at 0.1 A g−1 after 120 cycles) and excellent rate capability (263 mAh g−1 at 2.0 A g−1) as the anode material for KIBs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Korea University, Department of Materials Science and Engineering, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678)
2 Kongju National University, Department of Chemical Engineering, Cheonan, Republic of Korea (GRID:grid.411118.c) (ISNI:0000 0004 0647 1065)