It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The prediction of biogeographical patterns from a large number of driving factors with complex interactions, correlations and non-linear dependences require advanced analytical methods and modelling tools. This study compares different statistical and machine learning models for predicting fungal productivity biogeographical patterns as a case study for the thorough assessment of the performance of alternative modelling approaches to provide accurate and ecologically-consistent predictions.
Methods
We evaluated and compared the performance of two statistical modelling techniques, namely, generalized linear mixed models and geographically weighted regression, and four machine learning models, namely, random forest, extreme gradient boosting, support vector machine and deep learning to predict fungal productivity. We used a systematic methodology based on substitution, random, spatial and climatic blocking combined with principal component analysis, together with an evaluation of the ecological consistency of spatially-explicit model predictions.
Results
Fungal productivity predictions were sensitive to the modelling approach and complexity. Moreover, the importance assigned to different predictors varied between machine learning modelling approaches. Decision tree-based models increased prediction accuracy by ~7% compared to other machine learning approaches and by more than 25% compared to statistical ones, and resulted in higher ecological consistence at the landscape level.
Conclusions
Whereas a large number of predictors are often used in machine learning algorithms, in this study we show that proper variable selection is crucial to create robust models for extrapolation in biophysically differentiated areas. When dealing with spatial-temporal data in the analysis of biogeographical patterns, climatic blocking is postulated as a highly informative technique to be used in cross-validation to assess the prediction error over larger scales. Random forest was the best approach for prediction both in sampling-like environments as well as in extrapolation beyond the spatial and climatic range of the modelling data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer