It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This article is dedicated to analyzing the heat transfer in the flow of water-based nanofluids in a channel with non-parallel stretchable walls. The magnetohydrodynamic (MHD) nature of the flow is considered. Equations governing the flow are transformed into a system of nonlinear ordinary differential equations. The said system is solved by employing two different techniques, the variational iteration method (VIM) and the Runge-Kutta-Fehlberg method (RKF). The influence of the emerging parameters on the velocity and temperature profiles is highlighted with the help of graphs coupled with comprehensive discussions. A comparison with the already existing solutions is also made, which are the special cases of the current problem. It is observed that the temperature profile decreases with an increase in the nanoparticle volume fraction. Furthermore, a magnetic field can be used to control the possible separation caused by the backflows in the case of diverging channels. The effects of parameters on the skin friction coefficient and Nusselt number are also presented using graphical aid. The nanoparticle volume fraction helps to reduce the temperature of the channel and to enhance the rate of heat transfer at the wall.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mathematics, Faculty of Sciences, HITEC University, 47080 Taxila, Pakistan
2 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia