Abstract

The division of fuzzy space is very important in the identification of premise parameters and the Gaussian membership function is applied to the premise fuzzy set. However, the two parameters of Gaussian membership function, center and width, are not easy to be determined. In this paper, a novel T-S fuzzy model optimal identification method of optimizing two parameters of Gaussian function based on Fuzzy c-means (FCM) and particle swarm optimization (PSO) algorithm is presented. Firstly, we use FCM algorithm to determine the Gaussian center for rough adjustment. Then, under the condition that the center of Gaussian function is fixed, the PSO algorithm is used to optimize another adjustable parameter, the width of the Gaussian membership function, to achieve fine tuning, so as to complete the identification of prerequisite parameters of fuzzy model. In addition, the recursive least squares (RLS) algorithm is used to identify the conclusion parameters. Finally, the effectiveness of this method for T-S fuzzy model identification is verified by simulation examples, and the higher identification accuracy can be obtained by using the novel identification method described compared with other identification methods.

Details

Title
T-S Fuzzy Systems Optimization Identification Based on FCM and PSO
Author
Ren, Yaxue; Liu, Fucai; Lv, Jingfeng; Meng, Aiwen; Wen, Yintang
Publication year
2020
Publication date
Jul 7, 2020
Publisher
Research Square
Source type
Working Paper
Language of publication
English
ProQuest document ID
2539495659
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.