Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Prior radiomic studies have addressed a two-class tumor classification problem (glioblastoma (GBM) versus primary CNS lymphoma (PCNSL) or GBM versus metastasis). However, this approach is prone to bias and excludes other common brain tumor types. We addressed a real-life clinical problem by including the three most common brain tumor types (GBM, PCNSL, and metastasis). We investigated two key issues using different MRI sequence combinations: performance variation based on tumor subregions (necrotic, enhancing, edema and combined enhancing, and necrotic masks), and performance metrics based on the chosen classifier model/feature selection combination. Our study provides evidence that radiomics-based three-class tumor differentiation is feasible, and that embedded models perform better than those with a priori feature selection. We found that T1 contrast enhanced is the single best sequence with comparable performance to that of multiparametric MRI, and model performance varies based on tumor subregion and the combination of model/feature selection methods.

Abstract

Prior radiomics studies have focused on two-class brain tumor classification, which limits generalizability. The performance of radiomics in differentiating the three most common malignant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastatic disease) is assessed; factors affecting the model performance and usefulness of a single sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-CE) sequence without the edema mask across 45 model/feature selection combinations. The second pipeline showed significantly high performance across all combinations (Brier score: 0.311–0.325). GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the top models were built using a full feature set and inbuilt feature selection. No significant difference was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with (AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with comparable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on tumor subregion and the combination of model/feature selection methods.

Details

Title
Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters?
Author
Sarv Priya 1 ; Liu, Yanan 2 ; Ward, Caitlin 3   VIAFID ORCID Logo  ; Le, Nam H 2   VIAFID ORCID Logo  ; Soni, Neetu 1 ; Ravishankar Pillenahalli Maheshwarappa 1 ; Monga, Varun 4   VIAFID ORCID Logo  ; Zhang, Honghai 2 ; Sonka, Milan 2 ; Bathla, Girish 1   VIAFID ORCID Logo 

 Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; [email protected] (N.S.); [email protected] (R.P.M.); [email protected] (G.B.) 
 College of Engineering, University of Iowa, Iowa City, IA 52242, USA; [email protected] (Y.L.); [email protected] (N.H.L.); [email protected] (H.Z.); [email protected] (M.S.) 
 Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA; [email protected] 
 Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; [email protected] 
First page
2568
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539606142
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.