Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This work investigates the real-time performance of Linux kernels and distributions with a PREEMPT_RT real-time patch on ARM-based embedded devices. Experimental measurements, which are mainly based on heuristic methods, provide novel insights into Linux real-time performance on ARM-based embedded devices (e.g., BeagleBoard and RaspberryPi). Evaluations of the Linux real-time performance are based on specific real-time software measurement modules, developed for this purpose, and the use of a standard benchmark tool, cyclictest. Software modules were designed upon the introduction of a new response task model, an innovative aspect of this work. Measurements include the latency of response tasks at user and kernel space, the response on the execution of periodic tasks, the maximum sustained frequency and general latency performance metrics. The results show that in such systems the PREEMPT_RT patch provides more improved real-time performance than the default Linux kernels. The latencies and particularly the worst-case latencies are reduced with real-time support, thus making such devices running Linux with PREEMPT_RT more appropriate for use in time-sensitive embedded control systems and applications. Furthermore, the proposed performance measurements approach and evaluation methodology could be applied and deployed on other Linux-based real-time platforms.

Details

Title
Performance Assessment of Linux Kernels with PREEMPT_RT on ARM-Based Embedded Devices
Author
Adam, George K 1   VIAFID ORCID Logo  ; Petrellis, Nikos 2   VIAFID ORCID Logo  ; Doulos, Lambros T 3   VIAFID ORCID Logo 

 CSLab Computer Systems Laboratory, Department of Digital Systems, University of Thessaly, 41500 Larisa, Greece 
 Department of Electrical and Computer Engineering, University of Peloponnese, 26334 Patra, Greece; [email protected] 
 School of Applied Arts, Hellenic Open University, 26335 Patra, Greece; [email protected] 
First page
1331
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539622684
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.