It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K, Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1 ≈ 0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2 ≈ 2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.
The recently discovered kagome metal AV3Sb5 is a new playground to study the interplay between superconductivity and charge-density-wave (CDW) state. Here, the authors report pressure-dependent evolution of CDW and superconductivity in CsV3Sb5, suggesting an unusual competition between the two phases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639)
2 Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); Collaborative Innovation Center of Advanced Microstructures, Nanjing, PR China (GRID:grid.509497.6)