It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Breast tumors generally consist of a diverse population of cells with varying gene expression profiles. Breast tumor heterogeneity is a major factor contributing to drug resistance, recurrence, and metastasis after chemotherapy. Antibody-drug conjugates (ADCs) are emerging chemotherapeutic agents with striking clinical success, including T-DM1 for HER2-positive breast cancer. However, these ADCs often suffer from issues associated with intratumor heterogeneity. Here, we show that homogeneous ADCs containing two distinct payloads are a promising drug class for addressing this clinical challenge. Our conjugates show HER2-specific cell killing potency, desirable pharmacokinetic profiles, minimal inflammatory response, and marginal toxicity at therapeutic doses. Notably, a dual-drug ADC exerts greater treatment effect and survival benefit than does co-administration of two single-drug variants in xenograft mouse models representing intratumor HER2 heterogeneity and elevated drug resistance. Our findings highlight the therapeutic potential of the dual-drug ADC format for treating refractory breast cancer and perhaps other cancers.
Intratumor heterogeneity in breast cancer can limit the clinical success of antibody-drug conjugates (ADCs). In this study, the authors develop dual payload Her2-ADCs that show potent anti-tumor activity against heterogeneous breast tumors in vivo.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 The University of Texas Health Science Center at Houston, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, Houston, USA (GRID:grid.267308.8) (ISNI:0000 0000 9206 2401)
2 The University of Texas Health Science Center at Houston, Department of Neurosurgery, Houston, USA (GRID:grid.267308.8) (ISNI:0000 0000 9206 2401)
3 The University of Texas MD Anderson Cancer Center, Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, Houston, USA (GRID:grid.240145.6) (ISNI:0000 0001 2291 4776)